
Solution Management
Phase

SAP Solution Topic Area Solution Manager
Area

Operations &
Optimization

SAP Business
Intelligence (BI)

End-user support
concept

Configuration
Management

Tuning WebIntelligence Reports

Best Practice for Solution Management

Version Date: 1.2 February 2010

Applicability, Goals, and Requirements .. 3

Goal of Using this Service ... 3

Staff and Skills Requirements .. 3

System Requirements ... 3

WebIntelligence and SAP BW – Architecture ... 4

Performance measurement ... 6

Check which user is connecting to SAP BW .. 6

Getting the end to end statistics .. 7

Gathering the database runtime .. 10

Gathering the OLAP runtime ... 10

Gathering MDX runtime ... 11

Gathering the Single Statistical Records STAD .. 11

Bringing together the results .. 14

Turning on logging in BOE (for OLAP access) ... 14

Tuning WebIntelligence reports ... 16

Tuning database runtime ... 16

Tuning OLAP runtime .. 16

Tuning MDX runtime ... 18

General tuning hints .. 18

Performance tracing and note search .. 19

Tuning WebIntelligence runtime .. 21

General Considerations ... 21

Customizing BI Universe definition .. 22

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

2

Removing unnecessary L00 objects .. 22

Removing unused or redundant detail objects ... 22

Optimizing detail object syntax .. 22

Adding keys to objects used in an LOV for filtering .. 23

Scheduling vs. on-demand reporting ... 23

Query Drill for hierarchies .. 24

Hierarchies with linked nodes .. 24

Filtering ... 24

Static filtering with WebI Query filters ... 24

Static filtering with BEx Query restrictions .. 25

Dynamic filtering of characteristic values ... 25

Dynamic filtering with BEx query variables... 25

Dynamic filtering with WebI filters .. 26

Large LOVs for prompting ... 26

Reports with high data volume... 26

Reducing the size by optimizing WebI queries ... 26

Remove unused fields from the query .. 26

Refactor queries to extract more constant master data .. 27

Reducing the number of rows per request by using guided navigation 30

Using Drill ... 30

Using Report Linking ... 30

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

3

Applicability, Goals, and Requirements

Goal of Using this Service
In the Business Intelligence area, a significant change in SAP’s strategy for reporting solutions has
happened since the acquisition of Business Objects. Until then, SAP promoted the use of the Business
Explorer Suite including, among others, the Business Explorer Query Designer, Analyzer, Web
Analyzer, Web Application Designer, and Report Designer.

Since Business Objects is part of SAP, the usage of the reporting toolset formerly known as Business
Objects Information Discovery and Delivery (IDD) is getting more and more widespread within the SAP
user community. With products both being prominent and setting de-facto standards such as Crystal
Reports, WebIntelligence, Voyager and XCelsius, the user base is moving towards more ease of use,
intuitiveness, and flexibility in Business Intelligence reporting.

All the SAP Business Objects reporting tools share the same technological basis - the Business
Objects Enterprise Platform. This document describes Best Practices for solving common known
problems related to this platform.

Staff and Skills Requirements
To implement this Best Practice, you require a good general technical understanding of the SAP
Business Objects Enterprise Platform and SAP BW. For example, the role and tasks of the different
servers like the WebI Report Servers in a reporting scenario should be known.

System Requirements
Unless stated otherwise, the information given in this document is applicable to any Business
Objects Enterprise XI 3.1 installation connecting to an SAP BW 7.01 (EHP1) system. In some
cases we also include troubleshooting information relevant for the previous release XI R2.

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

4

WebIntelligence and SAP BW – Architecture
This section describes general ways how to connect WebIntelligence and SAP BW systems.

WebIntelligence connects to SAP BW via an OLAP Universe. In most use cases, the Universe will
connect via a BEx Query to either a MultiProvider or an InfoCube. In rare cases there can be queries
on DataStoreObjects (DSO) or InfoSets as well.

The other possible way of connecting a universe to SAP BW is by using direct access to
MultiProviders or InfoCubes. In this case there are no OLAP functionalities like calculated key figures,
hierarchies, authorization checks, and so on. Furthermore, a connection can be established with
DataFederator. DataFederator connects directly to the database tables of SAP BW. Calculated key
figures and other OLAP features are not available from SAP BW in this case.

The following illustration shows the detailed connection mechanisms including DataFederator for the
WebIntelligence SAP BW integration.

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

5

The detailed execution for a MDX query is illustrated in the following flow chart:

WebI Report Refresh

MDX Generation

MDX BAPI‘s

OLAP Execution

DataManager Access

Business Objects Enterprise

SAP BW

MDA Layer

MDX Flattening

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

6

Performance measurement
This section describes how to find out how much time is spent in which of the above mentioned
interfaces / modules. It is very important for performance tuning to know where the significant runtime
is spent. Before starting any tuning efforts, it is essential to separate the total runtime into the different
processing parts.

Check which user is connecting to SAP BW
First of all, we have to find out which user is connecting to SAP BW. Each WebI report has at least one
underlying query which is on top of a Universe. There can be more than one query in one WebI report
and therefore even more than one Universe be involved. In this case it should be checked if all of the
involved Universes are using the same SAP User or Single-Sign-On (SSO).

The configured user in the Universe can be checked, for example, in the Universe Designer. Import
the specific Universe and go to File Parameters. In the Universe Parameters, there is a connection.
Pressing “Edit” on the connection will reveal the configured user.

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

7

Take down the user name, since we need it subsequently to do traces, gather statistics, and so on in
the SAP BW backend. If the Authentication Mode is set to “Use Single Sign On when refreshing
reports at view time”, the user connecting to SAP BW will be the same as the user you log onto
InfoView with SAP authentication.

Getting the End to End Statistics
Make sure the statistics data collection for the specific query/queries used by the Universe(s) is turned
on in SAP BW. Use transaction RSDDSTAT and make sure the following settings are applied for the
BEx query(s) (X On – 2 All):

We are now ready to run the WebIntelligence report (either in InfoView or in RichClient). Press the
“Refresh Data” button in the WebIntelligence report or press the button “Run Query” if you were editing
the query. After the refresh has completed, we need to get the complete runtime of the report and the
total records returned. If there are multiple queries involved in the WebIntelligence report, please add
them up.

To see the mentioned runtime and reports, the “Query Summary” template from within WebIntelligence
can be used. Drag the “Query Summary” into your report panel:

It will look somehow like the following illustration:

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

8

The total runtime of the report execution in this case was 71 seconds. The number of records retrieved
was 23.9401.

The overall runtime can be split into 5 different parts (Database, OLAP, MDX, RFC and
WebIntelligence). Each of these parts will be explained and described in the following sections. The
following illustration visualizes the different components of the total report execution time:

DB OLAP MDX RFC WEBI

0% 20% 40% 60% 80% 100%

Runtime parts for report execution

Now you have to gather the statistics in the SAP BW system. Use transaction SE16 (Data Browser)
and go to table RSDDSTAT_OLAP. In the selection screen enter the user identified further up and the
respective date and time. Keep in mind the time is in UTC.

Keep in mind the maximum number of hits in the selection screen is 200 by default. The statistics
records can easily exceed that value when running WebIntelligence reports so please first evaluate
the number of records (with the respective button) and change the maximum number of hits
accordingly. Otherwise, important runtime steps could be cut off.

1 Throughout this document all numbers are displayed in German format (dot as thousands separator
and comma as decimal separator) in order to match the format in the screenshots.

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

9

Press the execute button and you will get the table with all the statistics in SAP BW. Now, you
have to separate the backend runtimes into database, OLAP and MDX runtime.

The statistics result table will look like this:

For further information on SAP BW statistics and detailed descriptions of the specific EVENTID’s
please see the SAP Library at:

http://help.sap.com/saphelp_nw70/helpdata/en/43/e39fd25ff502d2e10000000a1553f7/content.htm

http://help.sap.com/saphelp_nw70/helpdata/en/43/e39fd25ff502d2e10000000a1553f7/content.htm

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

10

Gathering the Database Runtime
Click on the header of the column “EVENTID” to mark the whole column. Set a filter by pressing
and select the between range from 9000 to 9011.

In the column “EVTIME” we have the runtime on the database. In case there is more than one access
to the database, you can sum up the EVTIME to get the total database runtime. In this example, we
have a database time of 2,03 seconds.

If database runtime is high, it is also interesting to check EVENTID 9011 (Database selects) and
EVENTID 9010 (Database transfers). If event 9011 is far higher than 9010, this means that much more
records had to be read from the database than necessary. This is sometimes a hint for suboptimal
database access and could, in some cases, be avoided by building aggregates for the specific cube
(INFOPROV).

Gathering the OLAP Runtime
Click on the header of the column “EVENTID” to mark the whole column. Set a filter by pressing
and select the between range from 2500 to 4999.

The sum of the EVTIME in this example is 20,33 seconds. Another important measure for the OLAP
runtime is the EVCOUNT of the 3200 event(s). This is the number of cells which OLAP had to
calculate and can significantly influence the OLAP performance.

EVENTID Short Text Long description

3200 OLAP: Data Transfer at
Front End

During a data transfer to the front end, exception
aggregations and simple currency translations are
carried out, formulas are calculated, and the correct
number of decimal places for the data cells is

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

11

determined. In addition, the result set is sorted
according to the interface settings. The number of
cells that have been read is in the counter.

For further investigation of long OLAP runtimes event 3100 can be taken into account as well.

EVENTID Short Text Long description

3100 OLAP: Read Data This event measures the time that is needed to group
together the data requests to the data manager or to
read the OLAP cache. The number of characteristic
combinations that have been read is in the counter.

Gathering MDX runtime
Click on the header of the column “EVENTID” to mark the whole column. Set a filter by pressing
and select the between range from 40000 to 40036.

The sum of the EVTIME in this example is 8,64 seconds. This is the overall MDX runtime including the
flattening. In SAP BW 7.0 systems prior EHP1 SP3 you won’t find events greater than 40032 because
the flattening of the data is done on the Business Objects XI server. If there are events between 40033
and 40036 then the flattening is done in the BW backend.

Gathering the Single Statistical Records STAD
To get the memory consumption, Remote Function Calls (RFC) and the details about all the BAPIs
called during report execution, we need to enter transaction STAD in SAP BW.

When starting STAD, set a filter on the connection user for the Universe and select the appropriate
start time and the length of the interval to be investigated (according to the total runtime of the report).

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

12

This will return a set of RFC calls to the backend. Normally, the major runtime influencing part can be
easily determined by the column “Response time (ms).

Double-click that line to get to the details. In this example, we have to take the line with 36.838ms
response time.

In the header menu, click on “Task / Memory” to get the total memory usage in SAP BW (in the
example it was 131 MB).

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

13

Now, the last part missing for the total execution is the time spent sending the data over to the
Business Objects Enterprise (BOE) server including the commit time from the server that data was
received properly.

In the header menu, you can click on “RFC” to get to the RFC statistics. Something like the following
overview will be displayed.

We are only interested in the “as Server” part because of the BAPI function calls from WebIntelligence,
which are handled as server calls in SAP BW. The number of calls (in this example 27) is the number
of BAPI calls from the BOE server. Select the 27 or the green part of the “Calls” line to see the
different BAPI calls (for example, BAPI_MDDATASET_GET_AXIS_DATA) with the statistical time data.

For the moment we are just interested in the overall time. The remote execution time (in this example
31.051 ms) should nearly match the sum of times we evaluated earlier for database, OLAP, and MDX
runtime. There may be a little overhead in STAD for loading the program and so on, and therefore the
time is probably a little bit higher than our totaled times.

To get the data transfer time, we just have to calculate the difference between the “Calling” time
35.601ms and the “Remote execution” time 31.051ms which is the backend execution. The time for
sending over the data in this example is 4,55 seconds.

Sometimes it is also important to check the size of the dataset. In this example the sent record set was
920.072 bytes.

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

14

Bringing Together the Results
We have collected all the necessary parts to start an end to end statistics evaluation.

In this example, execution of a report the total runtime from the query summary in WebIntelligence
was 71 seconds. Out of this 71 seconds, 2,03 seconds were spent on the database, 20,33 seconds
were spent in OLAP processing, 8,64 seconds were spent in MDX execution, and 4,55 seconds for the
RFC calls (data send).

Runtime Analysis

50%

6%
12%

29%

3%

WebI RFC MDX OLAP Database

Keep in mind that for this example, an SAP BW 7.0 (prior to EHP1) was used. The high runtime in
WebIntelligence is because the flattening of the multi-dimensional dataset is done on the BOE server
prior to EHP1 SP3.

Turning on Logging in BOE (for OLAP Access)
To get the generated MDX statement for a specific WebIntelligence query and a detailed log file, it is
necessary to turn on logging on the Business Objects Enterprise server. If there is more than one
server handling WebIntelligence report, this has to be done either on all possible servers, or by
configuring a specific report to be handled by a single processing server.

To be able to trace the SAP connectivity for WebIntelligence or Voyager, the necessary registry
entries need to be configured.

The entries can be found in the following part of the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Business Objects\Suite 12.0\MDA\Log

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

15

The figure shows that underneath the Log entry, each module of the OLAP connectivity can be
configured for tracing.

For the SAP connectivity, the relevant registry values are:
HKEY_LOCAL_MACHINE\SOFTWARE\Business Objects\Suite 12.0\MDA\Log\Modules\SAPMODULE

o Verbosity (highest value is 10 decimal).

o MDX Query Log (full path to the logfile).

HKEY_LOCAL_MACHINE\SOFTWARE\Business Objects\Suite 12.0\MDA\Log

o LogFile (full path to the logfile).

These settings will generate two logfiles:

 A SOFA logfile that includes all steps that have been performed on the SAP server side

 A MDX logfile that includes all executed MDX statements

 After setting the registry value, the corresponding services from BusinessObjects Enterprise
need to be restarted (WebIntelligence services, Connection Server, Multi Dimensional
Analysis Server).

To activate the connectivity trace for WebIntelligence:

1. Click Start.

2. Select Run.

3. Click regedit.

4. Click OK.

5. Navigate to the following path: HKEY_LOCAL_MACHINE\SOFTWARE\Business
Objects\Suite 12.0\MDA\Log\Modules\SAPMODULE.

6. Set the value for the Verbosity to 10 decimal.

7. Set the value MDX Query Log to, for example, "C:\Logfiles\mdx.log".

8. Start WebIntelligence.

9. Create a new report based on an OLAP Universe.

Important: Always keep in mind that logging can produce a very large file and should never be used
in a production environment. It needs to be turned off after investigation by removing the registry
entries again and restart the WebIntelligence server.

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

16

Tuning WebIntelligence Reports
Now that we have evaluated the different parts of the overall runtime it is important to know how to
handle and tune each of these components. Therefore, the tuning approaches are split into database,
OLAP, MDX and WebIntelligence again.

Tuning Database Runtime
In many scenarios of WebIntelligence reports, database runtime is a significant part of the overall
report execution time. This is due to the fact that larger result sets are requested from the database
compared to BEx reporting. In BEx, there is a selection for different read modes. Normally, BEx reports
are set to “Query to read when you navigate or expand hierarchies”. WebIntelligence has a different
approach where data is loaded at refresh time to a so called “Microcube” on the BOE server. This is
comparable to a BEx report in “Query to read all data at once”.

The following tuning measures may help:

1. If database selects (EVENTID 9011) are much higher than database transfers (EVENTID
9010) building Aggregates for the involved InfoCubes can help to reduce the database
runtime.

2. If there are unselective accesses to the database causing the long runtime in many cases the
filter set in the WebIntelligence report is not restrictive enough (for example, data is requested
for millions of Assets, and so on). In this situation redesigning the WebIntelligence report in
regards to the Mandatory Filters can help improving the performance.

3. If the long database runtime is caused by master data accesses (/BI0/S* or /BIC/S* tables) or
navigation attributes (/BI0/X*, /BI0/Y*, /BIC/X* or /BIC/Y* tables) it might help to change the
Master Data Read Mode. By default MDX reads only posted values. This can be switched to
data in master data table according to SAP Note 1224318 and setting RSADMIN parameter
MDX_JOIN_CUBE_DIME=A.

4. To improve database runtime, you can consider implementing a BW-Accelerator (BW-A)

Within the scope of this document, it is unfortunately not possible to discuss all the possible
approaches of optimizing database runtimes. It should be kept in mind that the same possibilities for
database runtime tuning exist as exist for BEx queries. Especially redesigning the data model,
optimizing dimension tables, and so on, are possible starting points for further tuning measures.

Tuning OLAP Runtime
To improve OLAP runtimes, the same techniques as for normal BEx queries can be applied. First of
all, the query properties in transaction RSRT should be checked in regards to OLAP cache settings
and in regards to the “Use Selection of Structure Elements” flag. If there is a long runtime on event
3200 (OLAP: Data transfer to front-end) it might help in some cases to check the mentioned flag as
shown in the following illustration.

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

17

Furthermore, it should be checked if the “Cache Mode” is set, for example, to “Main Memory Cache
Without Swapping” so the OLAP cache can be utilized for the WebIntelligence report.

The EVCOUNT of event 3200 gives a hint on how many cells had to be calculated. Please consider
that calculating millions of cells can significantly doctorate the performance. Root causes for too many
calculations in OLAP are:

 Many calculated keyfigures

 Exception aggregation

 Too large datasets (keep in mind the read mode is all at refresh time)

 Suboptimal coding in MDX (always check if you are on the latest SP level and EHP1)

When using hierarchies with a large amount of unassigned nodes, the performance can increase
when suppressing the reporting on the unassigned nodes. This can be done for single hierarchies in
transaction RSH1:

From:

To:

The hierarchy needs to be activated after the change. Keep in mind that you can switch back that
setting at any time and it is immediately visible to the Business Objects reporting tools without having
to refresh the universe(s).

For tuning reports on top of MultiProviders, the MultiProvider hint can be useful for tuning the
performance. It works in the same way it is working for BEx. For further information on the

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

18

MultiProvider hint please follow the description in SAP Note 911939 or check the following link to the
SAP Developer Network (SDN):

http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/b03b7f4c-c270-2910-a8b8-
91e0f6d77096?QuickLink=index&overridelayout=true

Keep in mind that not all possible tuning measures have been described in this section. There is a
large variety of other potential tuning opportunities for OLAP runtimes. SAP can support you in
performance tuning.

Tuning MDX Runtime
This section will cover general hints for tuning the MDX performance. Keep in mind that this is a very
complex topic, and it can therefore only give you basic hints for tuning potential.

General Tuning Hints
A significantly long MDX runtime normally has two different reasons. Either the result set of the
executed MDX statement is very large or there is a complex generation of the axis data. In general, an
MDX statement requests a certain number of axes to be generated.

As an example, let’s execute the following statement:

SELECT { [Measures].[Keyfigure1], [Measures].[Keyfigure2] } ON COLUMNS,

CROSSJOIN(

CROSSJOIN(

[0COUNTRY].MEMBERS, [0CITY].MEMBERS),

[0COSTCENTER].MEMBERS) ON ROWS

FROM <BEx Query xyz>

Assuming the dataset would look somehow like the following illustration:

0COUNTRY 0CITY 0COSTCENTER Keyfigure 1 Keyfigure n
Germany Walldorf 1000 8,4494 33,4398
Germany Walldorf 2000 3,4994 23,2398
Germany Walldorf 3000 - -
Germany Berlin 1000 344,3993 33,0209
Germany Berlin 2000 - -
Germany Berlin 3000 399,9394 12,1233

Each axis (0COUNTRY, 0CITY and 0COSTCENTER) has to be evaluated separately. WebIntelligence
usually adds a NON EMPTY statement before the CROSSJOINs to filter out the rows which don’t
have posted values (for example, Germany; Walldorf; 3000). Nevertheless, you have to check in SAP
BW if there are posted values for specific combinations first. Adding more axes into the MDX
statement leads therefore to a higher number of permutations and decreases the performance.

You can indirectly influence the generation of the MDX statement by adding / removing elements on
the WebIntelligence query panel. The mentioned MDX statement would be a result of adding the 3
dimensions 0COUNTRY, 0CITY and 0COSTCENTER to the query panel. Therefore, the more
members (dimensions) you can avoid in the query the better the performance during execution. If, for
example, 99% of the users do not need a City in the report but only the Country then try to remove it
from the query panel and create a second hyperlink report containing City which is called with a filter
on Country.

You will encounter the same performance deterioration when you do a CROSSJOIN over two
hierarchies on a deep level. If you have, for example, a country hierarchy and a product hierarchy
which have to be cross joined in MDX you will get all the possible permutations:

http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/b03b7f4c-c270-2910-a8b8-91e0f6d77096?QuickLink=index&overridelayout=true
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/b03b7f4c-c270-2910-a8b8-91e0f6d77096?QuickLink=index&overridelayout=true

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

19

L01
Country

L02
Country

L03
Country

L01
Material

L02
Material

L03
Material

Europe Germany Walldorf Products Food Cheese
Europe Germany Berlin Products Food Yoghurt
Europe Germany Hamburg Products Food Milk

After the cross join of the 3 members of both the hierarchies you will get 9 lines for the different
permutations:
L01
Country

L02
Country

L03
Country

L01
Material

L02
Material

L03
Material

Europe Germany Walldorf Products Food Cheese
Europe Germany Walldorf Products Food Yoghurt
Europe Germany Walldorf Products Food Milk
Europe Germany Berlin Products Food Cheese
Europe Germany Berlin Products Food Yoghurt
Europe Germany Berlin Products Food Milk
Europe Germany Hamburg Products Food Cheese
Europe Germany Hamburg Products Food Yoghurt
Europe Germany Hamburg Products Food Milk

Involving large hierarchies can easily lead to memory dumps in SAP BW because of the size of the
internal table used to create the permutations. You can avoid such situations by involving filters on
specific members or hierarchy nodes (for example, L01 Country = ‘Walldorf’).

Performance Tracing and Note Search
To get a detailed analysis where the runtime is spent in ABAP processing it is necessary to know the
MDX statement executed from WebIntelligence. This can be easily extracted from the mdx.log file.
Please see chapter “Turning on Logging in BOE” for details on how to activate the logging of the MDX
statements.

Another way of getting the MDX statement (in case logging is not turned on or it is not feasible to turn
it on) is by setting an external ABAP breakpoint in class CL_RSR_MDX_COMMAND and method
SET_COMMAND_TEXT:

Set an external breakpoint after the “LOOP AT i_t_mdx”. Keep in mind the user set on the universe
connection. This user has to be set for the ABAP breakpoint as well (Utilities->Settings->Debugging).
You will find the MDX statement in i_t_mdx during report execution. Caution: One WebIntelligence
report can produce more than one MDX statement.

Once you have the correct MDX statement go to transaction SE30 in SAP BW and enter MDXTEST in
the transaction field like illustrated in the following screenshot:

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

20

Click “Execute” and you will see the MDXTEST screen. Enter the gathered MDX statement in the right
hand box:

Press button (“Run Query with Flattening”) to execute the MDX statement including the flattening.
Keep in mind that flattening is only done in SAP BW after version 7.01 SP3 (EHP1). In SAP BW
systems prior to EHP1 SP3 it is done in the WebIntelligence processing server. In this case you should
run the MDX statement in “Multidimensional” mode via the Play button next to the “Run Query with
Flattening” button.

Once the execution is completed and the result is displayed you can go back via the button in the
header menu bar. You will get back to the SE30 screen where you can click on “Evaluate” to get the
results from the ABAP runtime analysis. A summary of the execution time separated by ABAP,
Database and System will be displayed:

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

21

Now, you can display the detailed hit list by pressing the hit list button or F5. Sort the list called
methods by their net runtime to get the most time consuming functions / methods:

In this example, most of the time was spent in class CL_RSR_MDX_FLATTENING=>GET_FS_DATA.
It can be helpful to start an SAP Note search for the long running call / program name to see if there
are any new and improved implementations of specific ABAP content.

Furthermore, the hit list gives hints where to do further optimization (for example, exception
aggregation, calculated keyfigures, and so on) but due to the complexity of this investigation, it cannot
be handled in this best practice document.

Tuning WebIntelligence Runtime

General Considerations
Performance issues are very specific to the local situation, the business needs, and the environment
of the servers. In general, there are several facts with should be considered to influence the
performance.

 The number of variables brought back

 The number of calculations done in the report

 The number of joins in the universe

 Merged dimensions

 The amount of free hard disk space (virtual memory)

 The amount of RAM available

 The number of other processes running on the server / client machine

 The network speed

 The specification of the server

 The number of simultaneous users on the network / server

The performance can be measured at two different levels: at the query level itself and at the reporting
stage. Lack of performance at the query level will often mean that the query is using up a large part of
the server’s resources, which also affects other users.

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

22

The lack of performance at report level (for example, long computation times when just opening a
document, selecting a report or modifying anything in the report) can be caused by nested variables.
E.g. <Z>=f(<Y>), where <Y>=g(<X>) will be slower than <Z>=f(g(<X>)). (Note: if you are using
variables to perform complex calculations on a regular basis, it would be worth building an external
function DLL!)

 Synchronization is always a resource consuming process.

 Use of rankings: ranking capabilities are a powerful feature but this also means it takes up a
lot of resources. Using several of these in the same block can lead to long response times.

Customizing BI Universe Definition
While the default universe generated for a BI query or cube is usable, it contains a lot of elements
which are not strictly required for most reporting needs, and other elements which are not defined
optimally.

Removing Unnecessary L00 Objects
When a characteristic has no active hierarchy, the L00 node will be All members, and will not provide
any reporting value. In this case, it is best to delete all L00 objects in order to reduce complexity for the
report designing users.

Even in cases where an active hierarchy does exist, the L00 objects may be unnecessary. In cases
where there is only one top-level root of the hierarchy, it may be desirable to remove the L00 object for
a hierarchy, unless it is necessary to report members which are not assigned in the hierarchy.

Removing Unused or Redundant Detail Objects
It is recommended to remove or hide any detail objects from the Universe which are redundant or
unlikely to add any value to reporting, in order to prevent report designing users from including them
unnecessarily in queries.

Optimizing Detail Object Syntax
For queries on BI universes that include only the key and medium name detail objects of a dimension,
it is possible to modify the generated syntax of the objects to improve query performance, due to some
internal details of the OLAP BAPI interface.

To modify the syntax:

1. Open the universe in Designer.

2. Double-click the key detail object you want to modify.

3. In the Select text box on the "Definition" tab of the "Edit Properties" dialog box, change the
syntax to refer to the NAME attribute of the SAP characteristic.

For example, for the object L01 Customer Key, change the generated select syntax:

[Z_CUSTOM].[LEVEL01].[[2Z_CUSTOM]].[Value] to refer to the NAME attribute:
[Z_CUSTOM].[LEVEL01].[NAME]

4. Click OK to save the changes.

5. Follow the same steps for the name object. Change the syntax to refer to the DESCRIPTION
attribute of the SAP characteristic.

For example, for the object L01 Customer Medium Name, change the generated select syntax:

[Z_CUSTOM].[LEVEL01].[[1Z_CUSTOM]].[Value] to refer to the DESCRIPTION attribute:
[Z_CUSTOM].[LEVEL01].[DESCRIPTION]

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

23

Adding Keys to Objects used in an LOV for Filtering
As indicated in the sections below on filtering, it is sometimes important that objects which have an
LOV associated with them should always have a key which points to the underlying technical name for
the characteristic values represented by the objects. By default, all Dimension objects automatically
created when generating a BI universe have this defined. In cases where customization has been
done or where detail objects are used in this way, this will have to be done manually as follows:

1. In the Universe Designer, double-click the object to be used.

2. Select the “Keys” tab.

3. Insert a key entry as follows:
• Character
• Key Type: Primary Key
• Select: [<characteristic>].[TECH_NAME], or [<characteristic>].[LEVEL<xx>].[TECH_NAME]

For Example:

Scheduling versus On-demand Reporting
One of the first factors to consider when designing a report is whether it is necessary to have the
report run on-demand, or if the reporting needs would just as well be met by having users access a
regularly scheduled instance of the report. In general, it is possible to minimize the number of times a
report is run against the SAP BW system. Therefore, it is recommended to use scheduling when
practical.

The primary benefits of scheduling rather than viewing on-demand are:

 Vastly improved viewing response time for the user.

 Overall reduction in burden on the BI system versus having many ad-hoc queries run.

Scheduling is not viable for reports which meet one of the following criteria:

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

24

 Report has a high level of interactivity, especially when the user will be prompted for values
which will filter a large portion of the results.

 Report makes use of drill down up to a point that requires a magnitude of more data to be
read into the scheduled instance than would have been read in the user’s combined initial
view and likely drill workflows.

 Different users have different views of the data returned by a query, either due to
personalization or security reasons.

Given the above factors, in some cases it will not be clear whether a single scheduled instance will
result in a lesser load on the various processing systems than many smaller on-demand viewing
requests. In some cases, experimentation will be required to determine the best approach.

Note that, regardless of whether scheduling or on-demand viewing is chosen for a given report, it is
still important to follow the recommendations laid out in the remainder of this document, to minimize
the hit on the BI system and WebI processing servers.

Query Drill for Hierarchies
Multiple hierarchies can be defined at the Characteristic level. They will be automatically exposed in
the universe. Universe Designer capabilities to define and maintain drill-down paths in WebI should be
leveraged to enable WebI users to drill down according to BI hierarchies as with any other custom
universe hierarchies. It is important to note that the Use Query Drill option that is available in WebI
Document Properties dialog helps to significantly improve the drill down performance. Activating this
option can make WebI behave more like BEx in terms of fetching limited result sets when drilling
down.

Therefore, it must be kept activated when there is an expectation to have drill down performance in
WebI as fast as within BEx. Of course, WebI user preferences (General Drill Options) also enables to
prompt users for applying query filters when drilling.

Hierarchies with Linked Nodes
Currently, using hierarchies which contain linked nodes can cause unexpected behavior. Specifically, if
a node which is returned by the WebI query is a linked node, WebI may display that node’s parent as
the “original” parent node, rather than the parent who linked to that node. This issue is currently under
investigation.

Filtering
In all but the most basic cases, it is necessary to filter the data exposed by an InfoCube or BEx Query
to get the desired result. In most cases, there are several methods which may include filtering on
WebIntelligence or on SAP BW side. In many cases, the method applied will have a profound impact
on the overall performance of reports.

Generally, filtering requirements can be separated into two categories: Static filtering, which will apply
the same values each time the report is run, and Dynamic filtering, which will filter results based on
user or other input.

Filtering in the context of this section deals primarily with filtering based on filtering based on
characteristic member values and not filtering based on key figure values.

Static Filtering with WebI Query Filters
Defining filters in the WebI query panel rather than in the underlying BI query provides a lot of flexibility
and allows a single BI query and single Universe to be reused for many WebI reports. By following a
few simple guidelines, it is possible to implement quite well-performing queries using static WebI
filters.

Use inclusive member filters rather than exclusive ones:

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

25

Avoid using “Not Equal To”, “Not In”, “Not between”, and so on in the filter pane of the WebI query
panel. Due to the need to resolve filters to member-sets, these types of filters do not perform well.
When practical (typically in cases where the set of members selected is relatively small), replace these
types of filters with the inclusive equivalent. If this is not possible, consider doing the filtering in the BI
query (see Static filtering with BEx Query restrictions)

Filter on indexed values:

To avoid the need to resolve member captions to member-unique names when viewing, ensure that
any characteristics which are filtered in WebI are filtered on indexed values. In order to ensure this,
two things are required:

1. The object which is being filtered must have a key associated with it. That key must be the
“technical name” of the underlying characteristic in BI.

2. Adding keys to objects used in an LOV for filtering for details.

3. The value(s) for the filter must be selected from the LOV, rather than being typed in manually.

If both of the above criteria are not met, the value entered or selected will have to be resolved to the
member-unique name each time the report is run, causing needless overhead. The degree to which
this is important varies depending on the cardinality of the characteristic: low cardinality characteristics
will not incur a severe penalty in doing member caption lookups. In any case, doing these lookups will
always incur some overhead.

Static filtering with BEx Query Restrictions
When the suggestions in static filtering with WebIntelligence query filters cannot be practically
followed, it may be necessary to consider altering or duplicating the relevant BEx query to impose the
restriction. This has the advantage of always producing the best-performing report, but the
disadvantage of added maintenance overhead and the need for potentially more BEx queries and
Universes to be defined if the filtered values needed are not the same for all consumers of the existing
BEx query.

Note: It is not necessary to update your Universe after making this change to an existing BEx Query.

Dynamic Filtering of Characteristic Values
When filtering based on user selection of value(s), there are two basic approaches possible: Defining
the filter and prompt within the WebI query panel, or utilizing BEx Query variables.

Dynamic Filtering with BEx Query Variables
As detailed in the section How BI variables are mapped and used in a universe, it is possible to define
variables within a BEx Query and these will be exposed as universe prompts. There is a performance
incentive to using this approach, as BI has some internal optimizations for handling variable-based
restrictions.

Using variables rather than WebI filters also has the potential advantage of requiring less maintenance
of prompt definitions, in cases where multiple reports source the same universe, and share some of
the same prompted filtering requirements. Of course, in cases where different WebI reports have very
similar data requirements but slightly differing prompting/filtering requirements, it may be preferable
from a maintainability perspective to use a base query with no variables and implement the prompted
filtering in the WebI queries instead.

To replace existing WebI filters with BEx Query variables:

 Replace WebI “Equal to” filters with Single value BEx Query variables.

 Replace WebI “InList” filters with Multi value BEx Query variables.

 Replace WebI “Between” filters with Range BEx Query variables.

Note: It is necessary to update your universe after making this change to a BEx Query.

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

26

Dynamic Filtering with WebI Filters
When filtering on high cardinality characteristics, to avoid the need to resolve member captions to
member-unique names when viewing (see Error! Reference source not found.), ensure that any
characteristics which are filtered in WebI are filtered on indexed values. To ensure this, two things are
required:

1. The object which is being filtered must have a key associated with it. That key must be the
“technical name” of the underlying characteristic in BI.

2. Adding keys to objects used in an LOV for filtering for details.

3. The value(s) for the filter must be selected from the LOV, rather than being typed in manually.

4. The prompt must be configured to “Select only from list” in the prompt options dialog.

If all of the above criteria are not met, the value entered or selected will have to be resolved to the
member-unique name before the report is run, causing needless overhead. The degree to which this is
important varies depending on the cardinality of the characteristic: low-cardinality characteristics will
not incur a severe penalty in doing member caption lookups. In any case, doing these lookups will
always incur some overhead.

Note: There is one case when the above recommendation to always use technical names as keys for
filtering is invalid. When working with multiple WebI queries in a single document, WebI will share the
prompt for filters in different queries which share the same prompt name. In the case where this
sharing is desired and the underlying characteristic being filtered is not from the same InfoObject for
both queries, it is essential to not have a key specified for the Universe object being filtered, as doing
so will result in the technical name for the first object being used, which will not be a valid identifier for
the other object (based on a different underlying InfoObject) being filtered. In the case where this
sharing is not desired, it is necessary to simply name the two prompts differently.

Large LOVs for Prompting
When generating an LOV for prompting on high cardinality characteristics, even retrieving the member
set for the LOV can be very expensive. In such cases, the user will commonly have to use the search
functionality in the prompt page to find the desired values. If it is not necessary to present the user with
an initial list to choose from, it may be desirable to enable delegated search for the characteristic in
the LOV. This will force the user to enter a pattern to match before any LOV values are returned, and
will only request the member set from BI which matches the user’s specified pattern. Delegated
search is enabled in the Properties tab of the object properties dialog in the Universe Designer.

Reports with High Data Volume
The OLAP BAPI (MDX) interface is not suitable to be used for queries which return a high volume of
data in a single request. This is due both to internal limitations within the OLAP processor and to the
flattening process which occurs before the data can be consumed by WebI. The volume of data
returned can be measured by the number of cells returned. In general, it is desirable to reduce this
number to the minimum required for the reporting requirement. This can be done by reducing the
number of columns or rows returned in the request.

Reducing the Size by Optimizing WebI Queries
Remove Unused Fields from the Query
While this may seem simple and not obviously necessary, it can have a profound impact. During the
process of WebI query and report creation, it is possible that fields may have been added in the query
panel, which are not actually used in the report. It is very important to review the query definition
before publishing a document, and remove any fields from the query definition which are not actively
used or desired to be made available during analysis. WebI will not optimize the query at run-time to
remove those fields which are not required.

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

27

It may also be desirable to customize the universe definition to remove any dimension or detail objects
which are found to be redundant, avoiding the possibility of a user inserting multiple versions of the
same thing into a report.

Refactor Queries to Extract more Constant Master Data
When creating reports which contain a lot of rows of data and display a lot of master data columns
(typically WebI Detail objects / BW characteristic properties) which does not change per row, it is worth
considering refactoring a single query into multiple queries to separate the more constant master data
from detail records. Note that it is important to weigh the inherent cost of making additional queries
against the savings realized by removing static master data from the mass result set. This approach
should only be used when the number of unique master data values to be retrieved is at least an order
of magnitude greater than the number of detail rows, and the number of master data fields is relatively
large.

Following is an example to illustrate this case:

The above screenshot shows a query definition with Customer, Order Date, Order ID, plus a couple of
measures. Note that we are including 7 Detail objects from the Customer dimension.

Below is the report in which you can see that we have many detail rows for a single Customer (City
Cyclists).

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

28

Although the customer detail fields are only displayed once in the report, they are in fact fetched and
replicated once per row in the MicroCube. For each row in the result set, the number of cells returned
will be 15:

 2 for Order Date (index and value)

 2 for Order ID (index and value)

 1 for Delivered Value

 1 for Order Quantity

 9 for Customer (value, index, 7 detail cells)

If we assume there are 1000 rows returned per customer, then the number of cells in the result set is
15,000 in this case.

Now, assume that we refactor this query into a master data query and a detail query as follows.

Master Data Query:

Notice that there is a Key Figure from the Detail query included in the Master Data query. This is to
ensure that only master data entries with corresponding data are returned by the Master Data query.
This is more important when your Master Data query contains more than one characteristic.

Detail Query:

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

29

The result in the Data pane of the WebI report panel is:

Notice that the two L01 Customer dimension object have been merged under a single L01 Customer
object. To configure merged dimensions, you can right-click a dimension and select “Edit Merged
Dimension”:

At this point, a WebI report can be designed in the same way as the original example, but the resulting
number of cells returned per detail row will be 8:

 2 for Order Date (index and value)

 2 for Order ID (index and value)

 1 for Delivered Value

 1 for Order Quantity

 2 for Customer (value, index)

The number of master data cells returned will be 9:

 9 for Customer (value, index, 7 detail cells)

If we assume there are 1000 rows returned per customer, then the total number of cells in all the result
sets is now 8,000 (detail data) plus 9 (master data), a reduction of nearly 7,000 cells when compared
to the original design.

While this is a somewhat simplistic example, the concept is extensible to more complex scenarios
involving reporting off master data and a high number of rows of data.

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

30

Reducing the Number of Rows per Request by Using
Guided Navigation
Another approach to reducing the number of cells returned per request, and indeed the total number of
cells, is to employ more guided navigation techniques in reporting, rather than presenting the user with
both high-level aggregates and details up front. This technique is appropriate when the total set of
data exposed by a report is vast, and the user is likely to be interested in all of the highly aggregated
data but only specific details. There are two main methods to achieving this: Using Drill in the report,
and using report linking.

Using Drill
Drill can be used within your WebI report as long as you have a hierarchy defined. It is possible to use
either BI hierarchies or custom hierarchies defined in the Universe for drill. To have only the data for
the current drill context fetched, rather than the entire dataset being fetched up-front, ensure that “Use
query drill” is checked in the WebI document properties.

As the query used to process the drill is essentially the same as any other filter request, it is important
to use ensure that objects to be used for drill also have an index defined when drilling, as specified in
the section Static filtering with WebI Query filters.

Using Report Linking
As another alternative to using drill, you may choose to use report linking. In this case, you would
define an initial report which contained only the highly aggregated levels of data which the user will
use to decide where more information is desired. Report linking is much more flexible in that you may
define links at any level desired, and reports linked to do not have to maintain the same formatting (or
indeed, have much data in common at all with the source report). All that is required is a relationship
between the data in the source context and the data in the target.

It is important to follow the same techniques when linking to a report as are followed in the other
dynamic filtering cases specified in the section, “Dynamic Filtering with WebI Filters”, to avoid
unnecessary member caption resolution in processing the query for the target report.

Best Practice: Tuning Web Intelligence reports running on SAP BW

© 2010 SAP AG

31

© Copyright 2009 SAP AG. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express
permission of SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of
other software vendors.
Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered trademarks of
Microsoft Corporation.
IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®, AS/400®, OS/390®, and
OS/400® are registered trademarks of IBM Corporation.
ORACLE® is a registered trademark of ORACLE Corporation.
INFORMIX®-OnLine for SAP and Informix® Dynamic Server

TM
 are registered trademarks of Informix Software

Incorporated.
UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.
HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide Web Consortium,
Massachusetts Institute of Technology.
JAVA® is a registered trademark of Sun Microsystems, Inc. JAVASCRIPT® is a registered trademark of Sun
Microsystems, Inc., used under license for technology invented and implemented by Netscape.
SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow, SAP EarlyWatch,
BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world. All other products mentioned
are trademarks or registered trademarks of their respective companies.
Disclaimer: SAP AG assumes no responsibility for errors or omissions in these materials. These materials are
provided “as is” without a warranty of any kind, either express or implied, including but not limited to, the implied
warranties of merchantability, fitness for a particular purpose, or non-infringement.
SAP shall not be liable for damages of any kind including without limitation direct, special, indirect, or
consequential damages that may result from the use of these materials. SAP does not warrant the accuracy or
completeness of the information, text, graphics, links or other items contained within these materials. SAP has no
control over the information that you may access through the use of hot links contained in these materials and
does not endorse your use of third party Web pages nor provide any warranty whatsoever relating to third party
Web pages.

	Applicability, Goals, and Requirements
	Applicability, Goals, and Requirements
	Applicability, Goals, and Requirements
	Applicability, Goals, and Requirements
	Goal of Using this Service
	Staff and Skills Requirements
	System Requirements

	WebIntelligence and SAP BW – Architecture
	Performance measurement
	Check which user is connecting to SAP BW
	Getting the End to End Statistics
	Gathering the Database Runtime
	Gathering the OLAP Runtime
	Gathering MDX runtime
	Gathering the Single Statistical Records STAD
	Bringing Together the Results
	Turning on Logging in BOE (for OLAP Access)

	Tuning WebIntelligence Reports
	Tuning Database Runtime
	Tuning OLAP Runtime
	Tuning MDX Runtime
	General Tuning Hints
	Performance Tracing and Note Search

	Tuning WebIntelligence Runtime
	General Considerations
	Customizing BI Universe Definition
	Removing Unnecessary L00 Objects
	Removing Unused or Redundant Detail Objects
	Optimizing Detail Object Syntax
	Adding Keys to Objects used in an LOV for Filtering

	Scheduling versus On-demand Reporting
	Query Drill for Hierarchies
	Hierarchies with Linked Nodes

	Filtering
	Static Filtering with WebI Query Filters
	Static filtering with BEx Query Restrictions

	Dynamic Filtering of Characteristic Values
	Dynamic Filtering with BEx Query Variables
	Dynamic Filtering with WebI Filters

	Large LOVs for Prompting
	Reports with High Data Volume
	Reducing the Size by Optimizing WebI Queries
	Remove Unused Fields from the Query
	Refactor Queries to Extract more Constant Master Data

	Reducing the Number of Rows per Request by Using Guided Navigation
	Using Drill
	Using Report Linking

